A Simple Force Balance Accelerometer/seismometer Based on a Tuning Fork Displacement Sensor

نویسندگان

  • D. Stuart - Watson
  • J. Tapson
چکیده

Seismometers and MEMS accelerometers use the force-balance principle to obtain measurements. In these instruments the displacement of a mass object by an unknown force is sensed using a very highresolution displacement sensor. The position of the object is then stabilised by applying an equal and opposite force to it. The magnitude of the stabilising force is easily measured, and is assumed to be equivalent to the unknown force. These systems are critically dependent on the displacement sensor. In this paper we use a resonant quartz tuning fork as the sensor. The tuning fork is operated so that its oscillation is lightly damped by the proximity of the movable mass object. Changes in the position of the mass object cause changes in the phase of the fork’s resonance; this is used as the feedback variable in controlling the mass position. We have developed a novel acceleration sensor using this principle. The mass object is a piezoelectric bimorph diaphragm which is anchored around its perimeter, allowing direct electronic control of the displacement of its centre. The tuning fork is brought very close to the diaphragm centre, and is connected into a self-oscillating feedback circuit which has phase and amplitude as outputs. The diaphragm position is adjusted by a feedback loop, using phase as the feedback variable, to keep it in a constant position with respect to the tuning fork. The measured noise for this sensor is approximately 10.0 mg in a bandwidth of 100 Hz, which is substantially better than equivalent commercial systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spring constant of a tuning-fork sensor for dynamic force microscopy

We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations ...

متن کامل

Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy.

We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account the mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even in the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs...

متن کامل

Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor

We report a new method of achieving tip–sample distance regulation in an atomic force microscope ~AFM!. A piezoelectric quartz tuning fork serves as both actuator and sensor of tip–sample interactions, allowing tip–sample distance regulation without the use of a diode laser or dither piezo. Such a tuning fork has a high spring constant so a dither amplitude of only 0.1 nm may be used to perform...

متن کامل

Application of the equipartition theorem to the thermal excitation of quartz tuning forks

The deflection signal of a thermally excited force sensor of an atomic force microscope can be analyzed to gain important information about the detector noise and about the validity of the equipartion theorem of thermodynamics. Here, we measured the temperature dependence of the thermal amplitude of a tuning fork and compared it to the expected values based on the equipartition theorem. In doin...

متن کامل

Ultra stable tuning fork sensor for low-temperature near-field spectroscopy.

We report on a distance control system for low-temperature scanning near-field optical microscopy, based on quartz tuning fork as shear force sensor. By means of a particular tuning fork-optical fiber configuration, the sensor is electrically dithered by an applied alternate voltage, without any supplementary driving piezo, as done so far. The sensitivity in the approach direction is 0.2nm, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003